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Abstract. Multiloop contributions in the Polyakov formulation of thestring (resp.
superstring) theory are calculated via a measure on the moduli space of curves
(resp. supercurves)which equalsthe modulussquaredof theMumfordform(resp.
superform). In [2] it is shown that the Mumfordform is a horizontalsectionof
a canonicalconnection.In thispaperweextendthis proofto superforms.

INTRODUCTION

The comparisonof path integral and operatorquantizationin the two-dimen-
sionalconformal field theoryand in the quantumtheoryof bosonicand fermionic

strings led to the discovery of unexpectedties betweenrepresentationsof the
Virasoro algebraand moduli spacesof curves (perhaps,endowedwith additional
structures);cf. [1, 2, 6, 7] amongothers.

Roughly speaking,the overall picture includesat leastthe following construc-

tions.

a) A Virasoro algebra can be defined on any Riernann surfaceas a central
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extensionof the algebra (or, rather, sheafof Lie algebras)of vector fields. The
centeris the de Rham sheaf,i.e., a central charge is associatedwith any point

andany closedcurve on the surface:of. [1].

b) The usual Virasoro algebra acts upon the moduli spaceof triples: (a Rie-

mann surface,a point on it, a formalparameterat this point):cf. [2,6,7]. Unlike
the casea), this action changesthe surfaceitself, i.e. nontrivially projectsupon
the moduli spaceof Riemann surfaces. This projection can be used to write

differential equations for the Polyakovmeasure,for the correlation functions,
etc. In [1], a connectionbetween a) and b) was conjecturally stated.In [2],
this was provedfor the bosoniccaseusing a different version of constructiona).

In this paper we extend this result to super-Riemannsurfaces.We hope to
return elsewhereto fermionic strings in connectionwith the following result,
sketchedin [2]:

c) The representationsof the Virasoro algebra belonging to the <<discrete

series>> give rise (with the help of b)) to somefait connectionson vectorbundles
over moduli spaces and thus to representationsof (the central extensionof)

the TeichmUllergroup.
I am happy to dedicatethis paper to I.M. Gelfand.His philosophyof repre-

sentation theory and formal geometrydeeply influenced the subjectdiscussed

here.

This paper may be consideredas a supplementto (the first three sectionsof)
[2]. I havestressedspecialfeaturesof supercurvesbut omittedsomecalculations

similarto thoseof [2].

1. PRELIMINARIES ON SUPERCURVES

1.1. SUSY-Curves.Let ir : X -÷ S be a SUSY-family (cf. [3], N 1), i.e. a
family of Riemanniansupersurfacesparametrizedby a complexanalytic super-
manifold S. Recall that a relative local coordinatesystemZ = (z, ~)on X is

a a
calledcompatible(with the given SUSY-structure)if D~= + ~ generates

the structural subsheaf of the relative tangentsheaf~ We denoteby

the dual sheaf (T~/s)* of rank 0 1. This is canonically isomorphic to
Ber andis a relative dualizing sheaf.Denoteby dZ a local sectionof

for which (dZ, D~)= I anddefinethe differential operator

b :O~—
5-w~,~~

by the local formula 5f = dZ D~f.This is clearly independentof the choiceof
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a compatible coordinatesystemZ and definesthe right version of the relative
de Rhamcomplexon X/S.

Let a : S -+ X be a S-point of X, i.e. a sectionof ir. The imageof a is a closed
subspaceof X of codimension1 1: points of a SUSY-curveare not divisors.
However, each point can be canonicallyembeddedinto a divisor with the same

support. Namely, let Z be a compatiblecoordinateand z — z
0 = — = 0

be the local equationsof the point. Then the divisor z — z0 — = 0 does
not dependon the choice of Z and henceis definedglobally over S. We shall
provethis in a universalsetting, defining the relative <<superdiagonal>>If CX xX.

1.2. Superdiagonal.Let J C OXxX be the sheafdefining the relative diagonal
i :L~-÷X x X.We have the usualexac’~sequencefor = Ox,~x/J

2
0-+J/.12-’.o tl.,-3.O -+0.

Furthermore,J/J2 = ~ Define 6 : -÷ ~-‘~s asan Os-linearmap

for which 6(dJ) = &f. Put I = Ker ~ andO~s= O~(1)/I.Weshall oftenidentify
sheavesonX~xXsupportedonthe diagonalwith sheaveson X.

1.3. Lemma. /.~ is a closed analytic subspace of codimension I J 0, called the
(relative) superdiagonal of X. For a compatible system Z = (z, ~) put Z, = (z,,

= p” (Z), where p 2 :X x X-+X are projections. Then L~is defined by the
1 1,

equatzonz
2—z1 ~2~I =0.

Proof Undera standardidentification

z2 — z1 — ~2~l modf
2 = dz — d~.

Moreover,~(dz — d~. ~) = D~z— D
2~. = 0. Hence(z2 — z1 — ~ mod

j
2 E I. Oneeasily checksthat in fact locally I = (z

2 — z1 — ~ + J
2. It re-

mains to check thati2 C (z
2 — z1 — In fact,J

2 =((z
2 —z1)

2,(z
2 —z1)

— ~ )), andwe have

(z2 — z1 )2 = (z — — ~2~l )(z2 — z1 + ~2~1 ~

(z2_zl)(~2—~)=(22 _z1 2~l~~2~

We shall now define a superresiduemap ress.We startwith a formal situation.

LetA be a supercommutativering of constants.

1.4. Lemma. Let ~ : A((z, ~)) = O-+ dZ. A((z, ~)) = w be the map ~f=
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= dZ Dzf Define ress:w -+ A as a continuous A-linear map with

1 for a = — 1, b = 1
ress(dZz”~’)=

0 otherwise

Then we have an exact sequence
& ress

(1) 0-+A-~0-*w-+A--*0

which does not change if one replacesZ by a different formal coordinate system
compatible with the same formal SUSY-structure.

Proof By defmition, ö(za) = dZ . aza~~, ~(z~’~) = dZ- zr’. It follows that (11
is exact. In order to provethat ressdoesnot dependon the choiceof Z it suffices
to establisha formulaof the type

dZz~~ — dZ’z’~ ~‘ = ~L(Z, Z’)

for two compatible SUSY-coordinatesZ, Z’. Using the analytic identity D~
log z = z~~ valid outsidez = 0, one canguessand then easily prove a formal

identity:ifz/z’ 1 mod (z, fl then

dZz~~— dZ’z’~~’ = ~ log zz’~.

The general casereducesto this one by a linear coordinatechange.In fact,
put

~‘=(~IIajz1)~+ ~ c~z1=f(z)~+y(z),
i~O f~O

z’= ~ bkz~c + ~
k~i Q~O

ThencompatibilitymeansthatD~z’= ~‘Dz~’ (cf. e.g. [3], i.e.

ag/az=f2 —‘ya7/az; 13=—f’y.

In particular, b
1 = a~+ nilpotent, and we have a new compatiblesystem

= (bj~z’, bTb’
2~f).ReplacingZ’ by Z” doesnot changethe superresidue,

andz”z~ as 1 mod (z, ~).

1.5. A local computation. Now let a : S -÷ X be an S-point of X, defined
by z = z

0, ~ = ~. Considera section i’ of w meromorphicin a neighbourhood
of this point and having a pole of order ~ i + 1 at the associateddivisor, i.e.
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(2) v = dZf(Z, s) (z — z
0 — ~.)_(i+ 1) f regular.

Denote by ress(Z ~. )(V) the superresiduecalculated,say, in the completion

~
1(~sX(z— z

0 — ~, ~ — ~fl. Thenwehave

(3) ress(Z ~ )(V) = ~ ~ l(f) Izz0

In fact, if

f= ~ a~(z_z~_~)1~ ~ b~(z~z0~
j~O k~O

thenress(Z ~ )(V) = (— 1)bib1.On the other hand

D~’~
1=D~(a/azysothatD~’~(f)Izz = ( l)~j!bj.

1 .6. Residuewith coefficients. The invarianceproperty of the superresidue
shows that for any coherentsheafE on S and any S-pointof X thereexistsa

map of sheaves

ressD : w ® ~*E(~D) —s.E

where D is the divisor associatedto this S-point. Applying this to E = w and
D = superdiagonalwe get two residuesalongp

1,2 : Xx~X-+X

ress
1’2:w~ w(ooL~).40x.

The following Lemmais a superanalogueof 2.1.1.1, [2].

1.6.1. Lemma. Thereexistsa uniquemap

r~s :w XI w(~S)o

with thefollowingproperties:a) ~ o r~s= ress1 — ress2.

b) The restriction of re~sto sectionswith boundedorder ofpole is a diffe-
rential operatoralongfibresofp

1 2~

Proof If thereare two mapswith sucha propertythentheir differencewould
be a differential operatormapping w XI w(ils’

5) into constantsir~(Os). Hence

it mustbe zero.Thereforeit sufficesto constructre’~slocally. Putting
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v=dZ1 ~dZ2f(Z1,Z2,s)(z1 —z2—~1~2)~’~’)

andcalculatinglocally via (2) and (3) we get

ress
1(v)= —dZ

2 ~ ~ 1 f(Z1, Z2, ~

ress
2(v)=(_l)~ 1dZ

1 ~ D~’f(zi,z2,s)Izzz

Now put

[~±1
(4) re~s(v)=— ~ (—1)[~ .jD~D~f(Zi,Z2,s)~zzz

In orderto checkthat ~r~s(v)= ress
1(v) — ress2(v)denote

~ =D~D~fI~z~

Then

=
~ ~

This leadsto the cancellationof all termsin ~ r~s(v) exceptfor the first and
thelast. Finally, c) is checkeddirectly.

1.7. The Grothendieck - Sato description of the differential operator sheaf.
LetE be a vectorbundle onX. Denoteby DE/s the sheafof differential operators
vertical (over5),actingon E on the left. Thereis a standardisomorphism

E®Dois ®L’*~~1)gis.

PutEr = w ® E* and considerthe sheafE EXI Et(
00 ~S) of meromorphicsec-

tions of E ~ Et(oo ~S) with a pole at L~. For a sectionv of this sheaf,denote
by r(v) the operatorE —~E definedby

r(v) 2 = ress~g(v, p* 2)
2

where ress
2 means the superresiduealong p

2 and (v, p~2) refers to the con-

tractionE ~ (w ®E*® E)-~E IXI w.

1.7.1. Lemma. a)Ker r = E ~ E
t.

b) r definesan isomorphism
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r:E~Et((i+ ~

where~ 2i + 1 refers to theD2 — order of a differential operator (which depends
only on theSUSY-structure,cf [3]).

Proof a) is clearand b) follows from (3). In fact,DE,s is generated by powers

of D~and End E. Odd powersare coveredby r in view of (3). Combiningwith
multiplication by ~ — ~2 onealso reconstructsevenpowers. U

1.8. Adjoint operators.In the previousnotation, let C): Er ® E -+ w be the
naturalcontractionmap.DenoteDEns right the sheaf of differential operators

overS actinguponEr on the right.

1.8.1.Lemma. Thereexistsa uniquering isomorphism

DE,s -+DErIS right :PP~

and a uniquemap

{...} :EtxDE/SxE~#0x

with thefollowingproperties:for any ft E E’, e E E, F, Q E DEIS

(5) (f

t Fe) = (ftp e) + ~{ft P, e};

(6) PEEndE=~ ft,P,e}=0;

(7) {ft D~,e} = (— l)~ l(dZ)~(ft, e);

(8) {ft, QP, e} = {ft~ F, e} + {ft, Q, Pe}

Proof From (6) — (8), uniquenessof {ft, F, e} is clear. From (5) uniqueness

of P then follows. To prove the existence,one gets an explicit formula of the
type (5) in a compatiblecoordinatesystemZ, usingthe <<integrationby parts>>
procedureandthenchecksall identities. U

1.9. A central extension of DE,s. Using Lemma 1.7.1., one can describea

canonical central extensionof DE,s consideredas a Lie superalgebra(and de-
notedthenD~s) by the sheafH1 = w~

15/bO~which is nontrivial on the fibre-

wise Zariski-opensubsetsof X. The existenceof suchan extensionwas suggested
by E. Witten [9] in his discussionof [I], andit was constructedby E. Getzler
[10] in the bosonic case usingcyclic homology. Here it arisesin a completely
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naturalway, bothin bosonic [2] and fermioniccontexts.To constructit, we start

with an exactsequence(7.lb):

(9) 0-4E~Et-4E~Et(~3)L~DE/s-4o

Lemma 1.8.1. allows one to define the action of D~5upon E ~ Et(0.0 iv):

(10) LieP(f)=p~(P)v—(—l)vp~(~),

for PE DE~ v EE ~ Ft (~ ~S)

1.9.1. Proposition.a) E ~ Er is invariant with respect to this action. The

inducedaction upon Im(r) = DEIS is the adjoint one.
b) Let i~: X-+X5xX be the relative diagonaland j thecompositemap

j~ str
j:ES xEt4E®w®E*~+w.

Then D~J’~S(E ~ Ft) C f’(SO). Therefore,factorizing (9) by [~(50), we
get a centralextensionon X:

(11) 0H~D~sD~s0.

Proof a)Wemustestablishthat fore EE we have

r(p~(F) u) (e)—. (— I r(vp~(~))(e)= Pr(v)(e) — (— l)l’vr(v)P(e).

The first membersof both clearly coincide. The secondmemberscoincide

dueto the adjunctionformula andthe fact that ress o 5 = 0.
b) Similarly, fore EE, ft EEt we have

(12) i~(PeDf
t —(— ~

Furthermore,str(e ~ ft) = (

1)ef(fr e) (onemay takethis as definition).

Therefore,the r.h.s.of (12)after applying str becomes

(~ l>U’~~(f~, Fe) — (— 1JC~+~)(fr~e) E 50. U

2. ATIYAH’S ALGEBRAS

2.1. Notation. The basic technical notion introducedin [2] is that of the
Atiyah algebras(cf. also [8], ch. VIII). In order to motivate it, we recall that
historically the idea of symmetry becameembodiedin the following chain of

structures:
Lie group Lie algebra of a Lie group — abstractLie algebras.Similarly,

the packageof definitions given in [2] consistsof various specializationsof the
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following scheme:
Automorphismgroupof a geometricobject V as

~ sheafof infinitesimal symmetriesof V (Atiyah’s algebra)
~ abstractAtiyah’s algebras.

The geometricobject V in questionmay consistof a collection of manifolds,

morphisms,and distributions. Therefore, its sheafof infinitesimal symmetries
is endowedwith the correspondingstructures.Below, we list the principal si-

tuations we have to deal with, togetherwith the standardnotationand some
explanations.For an axiomatizationof these <<concrete>> Atiyah algebras we
refer to [2], § 1, and to §3.6below.

We work in the category of superanalyticspaces.Thereforeexpressionslike

<<manifold>> and <<supermanifold>>,<<vector bundlea, <<supervectorbundle>>, and
<<locally free sheaf’>, etc. are usedsynomymously.However,involvement of a
SUSY-structureis indicatedin notationby asuperscripts.

2.1.1. V = X, a manifold. Its sheafof infmitesimal symmetriesis denoted
Tx, thetangentsheaf.

2.1.2. V = (X, E); E is a vectorbundleon X. Its sheafof infmitesimalsym-

metriesAE is a Lie (super)algebraon X representedas an extension

0~÷EndE~+AE~*TX.+0,

where End E is the internal endomorphismsheafE*Q~E. It coincides with the
sheafof (left) differential operatorson F of order ~ 1, whosesymbolsisidentity.

2.1.3. V = (X, 5, it), where it : X -÷ S is a submersion(<<relative manifold>>).

Here the sheafof infinitesimal symmetriesis denotedby T,r .~It canbe described
as

T~ (d7rY’(1(~(Ts)),d1r:Tx 41r*(Ts).

Let T~15be the sheafof vertical vectorfields.Clearly,wehave

O*Txts +T

In otherwords,a vectorfield belongsto T~if all vectorstangentto pointsof
a it-fibre projectonto thesamevectortangentto thebasespace.
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2.1.4. V = (X, 5, it, E), whereF is a vectorbundle on X. The corresponding
Atiyah algebrais denotedAE~.It is embeddedin the diagram

EndE =EndE =EridE
4. 4. 4.

(1) AEIS ~+AE -+AE

4. .4, 4.
T11s -+T

which is self-explanatory.

2.1.5. V = (X, S, it, SUSY-structure),i.e. a SUSY-family. The sheafof infmi-

tesimal symmetriesis denotedhere by T~C T~.It consistsof vectorfields a
on X such that [~, T~15]C T~,sand fits into the exactsequence

0~7~15+T~+ir~(T5)+0.

Thefollowing lemmais straightforward:

2.1.5.1.Lemma.Let Z be a compatiblelocal coordinate. Then

(_~l)a
T~15 ~a0=aD~+ 2 Dza.DzIaE0x~[a,D~]=__D~aD~.

In particular,

T —T~ 0T
1XIS — XIS XIS

as sheavesof linear spaces.

2.1.6. V = (X, 5, it, E, SUSY-structure).The correspondingAtiyah algebra

will be denotedA ,~.Itfits into a diagramsimilarto (I):

EndE =EndE =EndE

4. .4. 4.
(2) A~

15 -~÷A~~-+AE

4. 4. 4.
T~15 ~ -+T~

A local descriptionsimilar to that in [2] shows thatA~15is a sheafof combined
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Neveu-Schwarz-Kac-Moodysuperalgebrasfactorizedby the centre.

2.2. The a-extensionof A~.,T.We shall now describean objectA~ which

embodies the information not only on the infinitesimal symmetriesof V in
2.1.6 but also on its canonicalcentral extension(which is symbolizedby tilda)
and which is a complex(as superscriptdot indicates). The nonzerocomponents
on this complexlive in dimension— 2, — 1, 0 andare as follows

a)A~2
1~=0~

b)A~.”~=A~.

c)A~~ is definedby the following commutativediagramwith exact rows

on XxX

0 E~E~ E~Et(0o~) ~ DEIS ~

II E~Et(2L~,!) 4.
U

(3) 0~+El~Et -+ -~ A~.15-+0

4. II
OW~s* A~’~ 4 A~154O

The first line of this diagramcorrespondsbo the superversionof theGrothen-
dieck-Satodescriptionof DEIS (cf. 1.7.1). The sheaf is r~ (A~15) by defini-
tion. The lower left vertical arrowis the restriction to the relativesuperdiagonal

followed by the matrix supertracemap. The lower line is supportedby the
diagonalwhich is identifiedwith X : i~,: X -÷X x X.

Finally, the differentials of A~.,Tcan be readoff the following commutative
diagramwhosemiddlecolumnis the last line of(3):

0
6

(4) -4 ~4-1~S ~ ASIT

.1~ II
A~.15 ~

.4,
0
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Our~ correspondsto in the pureevensettingof [2].

2.3. The bracketson A~. We shall now describethe structureof a differen-
tial graded lie superalgebraon AE~.We take the standardZ2-grading upon

and andthe reverseoneupon
Thebracketsare definedas follows.

is the standard(super) commutatorof the vector fields preserving
(X, S, it, SUSY).

is inducedby the natural action of ~ via infinitesimal symme-

tries. On A~15C ~ it coincideswith that inducedby A~.15C D~’~5on
E~Et (ooI~S)(cf1.9):

~

is defmedas the standardaction of T~(which is a factor of
uponO~=A~~.

Finally, [ , is given by the formula

[e ~ft, e’ ~f lt1 = (_ if
7 +T~t)strr~~(fte1~f’te)

Here e ~ ft, e’ XI meanrepresentativesin E ~ Et(2L~)of the elementsof

we wish to commute(cf. (3)). The map ré~sEis definedlike in Lemma
1.6.1., only here it takesvaluesin End E. Finally, str is the usual matrix super-
trace.

2.3.1. Lemma. with these brackets is a differential graded Lie superal-

gebra.

To verify this lemma, one must use a series of identities in order to checkthe
following facts:

— the symmetryof[ ~ justifyingour choiceof Z
2-gradation;

— the Jacobi identity which amountsto the verification that A~, A
2 are

A0-modulesand [ , ]:A~ ® A’ -+A2 is amorphismof A°-modules;

the compatibility of bracketswith the differentiald[a, b] = [da,b] + (— 1)”
[a, db] which sould be checkedfor degrees[— 2, 0], [— 1, — I] and 1— 1, 0],
only the secondcasebeinginteresting.

See[2] for the bosoniccase.

2.4. Nevey-Schwarzsheaf. Put NSEIS = A~1~urnS. The last line of (3)
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providesus with anexactsequence

0-*H’

whereH1 = w/SO~on the <<big>> open sets which are Zariski-openalong fibers
of it. From Proposition 1.3.1., it follows that NSE,s is a central extension of

A local computation as in [2] shows that NSE/s is a combined Neveu-
Schwarz-Kac-Moody type Lie superalgebra.

3. MAIN RESULTS

3.1. Theorem. In the notation of §2.2, we have a canonicalexactsequence
of sheaveson 5, whose middle term inherits from ~ the structure of a Lie
superalgebra:

(1) 0~+Os~*R°ir*A~.,,-*T
5.-+0.

Comparingthis with the exact sequencein 2.1.2. we seethat (1) looks like
the Atiyah algebraof an invertiblesheafon S. In fact it is one:

3.2. Theorem. Let XE denote the BereziniansheafBer Rir*E (cf. below and

[5]). Thenthere is a canonicalsystemof isomorphismsofsuperalgebras

‘E :R ~ ~÷A~

verifyinga list ofnaturalnessproperties(cf. [2] andbelow) U

Considernow the caseE = w
1. Put = X

1 and = (— lY’ (21 — I). A.A.
Voronov [5] and P. Deligne independentlyprovedthe following SUSY version

of Mumford’s theorem: there is a canonical isomorphism A1 A7 . Aconstant

sectioniz~~of A~/ is calleda Mumford superform.For/ = 3, it definesthequan-
tum measureon the moduli space (or, rather,stack)of SUSY-curves.PutA1 =

=A

3.3. Theorem. Using 32, one can construct a canonical connectionV on
® A~1.It is flat, andits horizontal sectionis (proportional to) ~u1.

Thus, writing down the differential equationsV1(a) (~) = 0 for a basis of
vector fields 8 in T~,we get a systemdefining ji~up to a constant.See[2] for
someconcretecalculationsin the bosoniccase.
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3.4. Proof of Theorem 3.1. In (5),R°it* is thehyperdirectimageof a complex
of sheaves.Working in the derivedcategory,we calculateit in the following way.
Consider the following complexes(only non zero terms are written explicitly,

the gradingis put in brackets):

T~15 P W~1S[2] : 0~~ ~xIs~

(—1) (0) (—2) (—1)

Looking at the diagrams(2), (3), (4), one seesthat admitsa 3-stepfil-

tration 0 = C C C = with the following properties:

a)A2 = <~‘XIS[2].

b)A~/A’1=T~.

c) A /A isisomorphic to EndF EndF.

—1 —2 (—1) (0)

Sincethis lastquotient is zero in the homotopiccategory,we have the distin-
guishedtriangleon X

°‘XIS [2] -#A~ -+ T
3

which leadsto the distinguishedtriangleon S

Rit*(4
1s [2]_*Rit*A~! Rit* T’

3

andthento the exactsequenceof the cohomologysheaves

R1 ir*T~-+ R°it*w~
15[2] -+ R°it*A~’ R°it*T~~+R’it*(415[2H~..

aearly,7~isquasüsomorphicto it~ (T5) so that

R-’it*r:~=o; R°it*T:~=Ts.

Furthermore,~ [21fits into a triangle

wx/s[l]—~.w~~Is[2]-+OX[2]

which showsthatR’ir* w~5[2] = 0 andgivesan exactsequence

R’it*Ox[21R°it*wxis [I]R°it*c415 [2]—*0

p :R
1it*Ox R1it*W~

1s.

Clearly, p is inducedby 5. Since in the Hausdorfftopologywe havean exact
sequence0 -~ it~ (O~)-+ OX -+ -+ 0, we get finally

R°it*<41s [2] Cokerp~R
2it*(it1 (Os)) = Os

finishing our proof. U
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In this way, we get the trace map Tr: R’1r*w~
15-~0~which is involved in

Serreduality. Notethat it may fail to be anisomorphism.

3.5.Proof of Theorem3.2. Following [2] closely, we first construct ‘E directly
for <<sufficiently acycic>> sheavesand then show that natural compatibility
propertiesallow usto extendthis constructionuniquelyto all E.

First we constructa useful approximation to ~ESn which is denoted

togetherwith a morphism/3: C~-+A~”~

C;
3: 0 -+ B~ :r~

/3 4. .4, .4, (see §2, (2) and (3))
~ A1’~ -4

E,ir E,IT E,i~ E,7r

The structure of is clarified with the help of a distinguished triangle

(2) E~Et[l]4C34it_tTs[0]

whose origin canbe seen from the following commutative diagram:

EIXIEt: EIXIEt -+ 0

qUiS ~. I
Ker w: B~ -÷ A~.is

jo,~
C3: B~ -+

N:
/

T/T~is

/

0 -~

(we continue identifying sheaveson X with sheaveson x X supportedon

the diagonal).
Now westart constructing‘E•
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3.5.1. CaseRir~E= 0. From Künneth and Serre duality, we get R(it x it).

(F IXI Et[l]) = 0. From (2), one thenseesthat

R0(ir x it)~C~~÷R°it~(it~17’s) = T~.

Now /3 furnishesa map

R°(irx it)*(/3)(c;s) = T~—~~R°it*(A!)

which definesa splitting of the exact sequence(1) as the readercan convince
himself by looking into the proof of Theorem3.1. Oneshouldalso check that

it commuteswith brackets.
On the otherhand, XE = 0~canonically since F is acycic, so that A~ is

E
canonically split. Hence the splitting of R ir*(AE ) we have definedgives ‘E~

3.5.2. CaseR’it*E = 0; a local sectionof it exists. From Kunnethand Serre
duality,we get in this case

End it*E for i = 0,

R’(itxit)*(E~Et[l])= 0 for i*0

Applying this to (2), weobtain an exactsequence

0-÷Endit*E-+R°(irxit)*(C)--*T
5 -+0.

Comparingthis with the definition of A,~~ (cf. 2.1.2), one begins to suspect
that an isomorphism~E : R°(it x ir)~(C~ ) Z~A~E should exist. This is in
fact so, and .J~

1 followed R°(ir x itt) (j3) hasas its kernel (super)tracelessendo-

morphismsandhencedefinesI~~:AXE ~+R0it*A~

To prove this, consider a Cousin resolved of constructed by meansof a
relative divisor T on XIS which is a linearcombinationof componentsassociated
to sectionsofit. Put T~2~= Xx T C XxX andnote that fromRtir*E = 0,

it follows that sheavesA~ (oQTf F x Et(~ T~2~),B~(oo T~2~)areacyclic with
respectto it x it : X,~x X -+ S. Our resolventis:

0 0

1’ 1’
B~.(oo Tt2~)/B~. 4A~(oo T)/A~ Z.A~.

1s(ooT)IA~1s

4. fq

B~(~T’
2~)-+ A~,~(ooT)

4. ‘4.

B~. -÷ A~
4. 1’

n
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It showsthat C~isquasiisomorphicto

-+B~(oo T~2~)-+A~(oo T)eB~(oo T~2~)/B~~A~(oo T)/A~,,-+...

Using the acycicity, one sees that R°it*(C”~)is just the middle cohomology

sheafofR°(irx irs) ((~3), i.e.

R°(irx ir)*(C~.)= {(r, b)E it*A~(oo T)®’ir*B~(ooT~2~)IBE)I

q(r) = p(b)}/Image ofB~(oo7-(2))~

We want to define with the help of (r, b) a differential operator, JE(v, b)
E -+E belongingtoA~E.Fore E ir~Ewe put

JE(r, b)(e) = r(e) — ressT(2)(b,p~e)

where (b, p~e)in the resultof the contraction:

(b, p~(e)) E (E ~ w)(2 ~ + oo T~2~)/E~ w(2 i~).

One can checkthat is well definedon R°(irx ir)~Ci’. In particular,poles
cancelbecauseq(r) = p(b). Ca1culatingJ~uponright andleft termof the triangle

(2) one seesthat it is an isomorph.ism,hence~E : R°(ir x ir~)(~) 3 A,,~.
Passingfrom T

1 to T1 + T2 and then to T2 onecanprovethat it doesnot depend

on T. Finally, we want to check that KerR
0 (it x ir)*(/3) o J~’consistsof (super)

tracelessendomorphisms.This follows from the fact that str: End ir* E —~

is Tr o R(ir x ir)*(j), where/isdefinedin 1.9.1.:
Str

J:EtXJE~-~F~Et~+w.

We omit the proof that ‘E is a Lie algebraisomorphism:cf. [2], 2.3.4.

3.5.3.Compatibilities.As in [2] we now statea list of compatibilitiesof various

‘s defining themuniquely.
a) ‘E should be compatible with base change.
b) Let 0 -+ E

1 -+ F —* E2 -+ 0 be an exact sequenceof locally free sheaves.
Then we have canonically AXE = AXE ® A~ definedvia ‘E = XE ® XE and

similarly for R°it*(A~.’).The tensor’produc~of Atiyah algebras is a special

operation defined in[2J, l.1.5.4.TheidentificationR°(it*(A~.~,T)=R°it*(A~.’~)
is constructed in the same way as in [2], 2.3.3. cf. below. The con

1ipa-

tibility conditionis:IE =‘E, ®
c) Foran exactsequence

0-+F(—D)-+E-÷E/E(--D)-+0

where D is a divisor associatedto a section of it put ED = R°it*(E/E(— D)).
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We have XE = XE(D)® detFD, so that AXE =AXE( D) ® ABeTED•As in [2],

2.3.2. one can define an isomorphism

R° ‘A~ ‘—R° ‘A~ ~‘ A~ E,n-~— it*k E(-D),n~ BeTED

andrequire the compatibility condition

‘E _‘E(_D)®10’

where id is identity on Ber ED.

As in [2] one easily sees that 3.5.1. togetherwith these compatibility condi-

tions definelE uniquely.

Existenceof ‘E follows from 3.5.2. after one settles some details as in [2],
2.3.5. Namely, the construction 3.5.2. agreeswith 3.5.1. and is compatible
with localization. If R1ir~E~= 0, i = 1, 2, it is also compatiblewith b), and if
R’-,r*E(— D) = 0, it is compatible with c). For a generalD, chooseD locally

with R’it*F(D) = 0 and express‘E Via ‘E(D)~Independenceof ‘E is shown
asin a previousargument. U

3.6. Proof of Theorem 3.3. We must first recall somegeneraldefinitionsand
constructionsfrom [3].

The Atiyah algebraAE of a vector bundle on a manifold X introducedin

2.1.2. belongs to the general class of abstract Atiyah algebras A eachof which
is a Lie superalgebra on X and a left Os-module, represented as an extension

(of bothstructures)

(3) ~

with the following properties.First, R is an associative0~-algebrawith unit
(like End E) endowedwith the (super) commutatoril~— (— l)~’ba.Second,
T~is endowed with the usual bracket.Third, we must have [a. ab] = [a, a]b +

+ (— l)~a[a, b] for any a E A andeithera, b ER or a E °X’ b E A; [a f] =

= e(cr)(f) forfEO
1 CR.

A connectionV on A is an Ox-linearsectionV : T~-÷ A. Its curvaturecV:

A
2TX -+A is given by CV(8

1 A 82) = [V(a1),V(a2)] —~ [ar, 82]. Aconnec-

tion on AE is the same as one on F. If = 0, V is called flat, or integrable.
Defining a flat connectionon A is the sameas giving a morphism(compatible

with all the structures)Ao~-+A : a + f-+ V(a) + f, a E T~,fE 0~
Assumethat in addition to (3) we are given in associativeOs-algebraR’ and

a pair P = ~ ~ of Os-linearLie superalgebramaps:~A : A —~ DerR’, ~:
~+ R”-~, with the following properties:[pR(r), r’] = [pA(r), r’] for r ER,

r’ E R’, ~A(a)(f) = e(a)(f) for a E A, fE 0~CR’. We can then definea new
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Atiyah algebraA’ with

0-4R’-4A’~*T~ -+0

and a morphism A -+ A’ = ~*(A) inducing “
0R upon R. In order to do this, we

constructthe semi-directproductR’ x A and impose relations (SOR (r), 0) = (0, r)
for all r ER.

In particular, Atiyah algebrasof the invertible sheaveson X are represen-
tableas in (3) with R = O,~,.On this class,we canputp (p~—e = multi-

plicationbyaXEC)andp*(A) :=XA.
One can also usethis p*-constructionto definean extensionof the construc-

tion (AE, AE ) -+ AE ~ E, to the class of all Atiyah algebras.
Suppose we have (A,, R,, e.), i = 1,2 as in (3). Wecanfirst fromR =R

1 xR2
and an Atiyah algebraB = A1~ x A2, R C B. Then we canputA1® A2 =

=p*(B)forp=(~~,p~xA)’

:B -÷DerR1® R2 : ~B(al, a2)(r1 ® r2) = [a1, r1]® r2 + (— 1)~ ® [az, r2]

“~~R,xR,:(R1 XR2)Lie -+(R1® R2)LIe :(r1,r2)—*r1® 1 + 1®r2.

As in [2], one constructsa canonicalisomorphismAE ® AE ~ AE®E2
(cf. [2], 1.1).1fF is invertible andaEZthenAEa GAE.

We can now return to the settingof Theorem3.3. We are going to construct

a canonicalisomorphismAA. ~ A, A A,1J~The above discussionshows
that we shall get in this way an isomorphismA05 ~ A. = AA .~, —-~ i.e. an
integrable connection on A1. We can prove, that it annihilates~ ~y anextension

of the argument in [2], 3.1.2 (at least, forg~’ 3) which is based upon the Deligne
compacificationof the stack of SUSY curvesandwhich weomit.

In turn, we shall derive theisomorphismAA. ~‘ ‘)~.AA on S from its version
on X andthe fact that AA. are certaindirect imagesof complexeson X.

Concretely,AA1 = R0,~~(A~3~)in view of Theorem 3.2. However, in the case
E = w’, we can devise a more economical subcomplex with the same direct

image.

Namely,T actsupon w
1 via Lie derivative.This givesrise to a section

Lie.
T3 4A’. -+T3.

IT L)1,IT IT

Define a maximal subcomplexA~ CA~JIIT for whichA~’~= Lie
1(T). Look-

ing at the diagrams(2) and (4), §2, one seesthat AJ is quasiisomorphicto
Hence we get ‘E : R°it*(A~)

3AA,. The structureof A’is displayed

in the following versionof(4), §2:
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0

4.

-~ 0)
.4.

AT
2” A~’~ -÷ A°’~
/ / /

4. -
A~IT C Lie7’(T) L±~

1T

4.
0

All complexesA~ belong to a generalizationof the categoryof Atiyah al-
gebrason X which is definedin [2], 1 .2 arid is called there the categoryof A-

tiyah it-algebras.The operationsp~,x, ®, and multiplication by a complex con-
tant can be extendedto it-algebras,cf. [2], 1.2.1. Using this, one can checkthat
it sufficesto constructisomorphismsA”

3-
11A~

The method used in [2], 3.1 is basedupon direct coordinatecomputations
and essentially shows that the <<central charges>>for A7

1 and Al’ differ by

the factor 6/2 — 6/ + 1. The sameis true here, with ‘~, insteadof this factor.
Werestrictourselvesto listing someusefulformulasneededto checkit.

(_ l)~
a) Let aa = aD~+ 2 D~a.D~E T~

15, asin 2.1.5.1.Then

Lie.~(8 ) (dZ)
1 = — D~a (dZ~.ja 2

b) Let Va EE ~ Ft(
00 A~)forE = w

1 be an elementsuchthat

r(va) = Liej(aa).Then

r a(Z
1)(~2 —~,) (— lfD~ a+j(~2 —~,)D~al .

v =—l + 1 1 dZ~dZ~_1modFIXIEt
a [(z2 — z1 ~2~1 )2 (z2 —z1 ~

(— 1)a
c)[8a,

8b~= 8{a,b}’ where{a, b} = aD~b+ 2 D~aD~b— D~ab

— . [ (—1y7 / 1
d) Lie.,(a~)= (~ 1)a!dZI® LaD~+ 2 D~a.D~+—D~aj® (dZ)’. U
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