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Abstract. Multiloop contributions in the Polyakov formulation of the string (resp.
superstring) theory are calculated via a measure on the moduli space of curves
(resp.- supercurves) which equals the modulus squared of the Mumford form (resp.
superform). In (2] it is shown that the Mumford form is a horizonzal section of
a canonical connection. In this paper we extend this proof to superforms,

INTRODUCTION

The comparison of path integral and operator quantization in the two-dimen-
sional conformal field theory and in the quantum theory of bosonic and fermionic
strings led to the discovery of unexpected ties between representations of the
Virasoro algebra and moduli spaces of curves (perhaps, endowed with additional
structures); cf. [1, 2, 6, 7] among others.

Roughly speaking, the overall picture includes at least the following construc-
tions.

a) A Virasoro algebra can be defined on any Riemann surface as a central
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extension of the algebra (or, rather, sheaf of Lie algebras) of vector fields. The
center is the de Rham sheaf, i.e., a central charge is associated with any point
and any closed curve on the surface: of. [1].

b) The usual Virasoro algebra acts upon the moduli space of triples: (a Rie-
mann surface, a point on it, a formal parameter at this point):cf. [2, 6, 7]. Unlike
the case a), this action changes the surface itself, i.e. nontrivially projects upon
the moduli space of Riemann surfaces. This projection can be used to write
differential equations for the Polyakov measure, for the correlation functions,
etc. In [1], a connection between a) and b) was conjecturally stated. In [2],
this was proved for the bosonic case using a different version of construction a).

In this paper we extend this result to super-Riemann surfaces. We hope to
return elsewhere to fermionic strings in connection with the following result,
sketched in {2]:

¢) The representations of the Virasoro algebra belonging to the «discrete
seriesy give rise (with the help of b)) to some fait connections on vector bundles
over moduli spaces and thus to representations of (the central extension of)
the Teichmiiller group.

I am happy to dedicate this paper to I.M. Gelfand. His philosophy of repre-
sentation theory and formal geometry deeply influenced the subject discussed
here.

This paper may be considered as a supplement to (the first three sections of)
[2]. I have stressed special features of supercurves but omitted some calculations
similar to those of [2].

1. PRELIMINARIES ON SUPERCURVES

1.1. SUSY-Curves. Let m : X — S be a SUSY-family (cf. [3], N = 1), ie. a
family of Riemannian supersurfaces parametrized by a complex analytic super-
manifold S. Recall that a relative local coordinate system Z = (z, {) on X is

called compatible (with the given SUSY-structure)if D, = + ¢ E generates

ot
the structural subsheaf T}( /S of the relative tangent sheaf TX/S. We denote by
Wy /s the dual sheaf (T;(/S)* of rank O | 1. This is canonically isomorphic to
Ber Q;(/s and is a relative dualizing sheaf. Denote by dZ a local section of Wys

for which (dZ, DZ) = 1 and define the differential operator

) :OX—>wX/S=w

by the local formula &f = dZ - D,f. This is clearly independent of the choice of
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a compatible coordinate system Z and defines the right version of the relative
de Rham complex on X/S.

Let 0 : S = X be a S-point of X, i.e. a section of 7. The image of o is a closed
subspace of X of codimension 1 | 1: points of a SUSY-curve are not divisors.
However, each point can be canonically embedded into a divisor with the same
support. Namely, let Z be a compatible coordinate and z — z, = ¢ —{, =0
be the local equations of the point. Then the divisor z — z, — {§, = 0 does
not depend on the choice of Z and hence is defined globally over S. We shall
prove this in a universal setting, defining the relative «superdiagonaly & CX ;(X .

1.2. Superdiagonal. Let J C OxxX be the sheaf defining the relative diagonal
i:A->X ¥ X.We have the usual exact sequence for O, (1) = Oxxx/7?
S

0->J/J? >0 A1) >0, 0.
Furthermore J/.I -1,.,((2l S) Define & : QX/S X/S asanO -linear map

for which 6(df) =8f Putl = Ker & and O,s= A(1)/1 We shall often identify
sheaves on X ¢ x X supported on the diagonal with sheaves on X.

1.3. Lemma. AS is a closed analytic subspace of codimension 1 | O, called the
(relative) superdiagonal of X. For a compatible system Z = (z, §) put Z; = (z,,
$;) = p} (Z), where 12K X x X->X are projections. Then AS is defined by the
equanon z,—z —§2§'l = 0

Proof. Under a standard identification
2 _ .
z, —2z; —§,8, modJ*® =dz —df - .
Moreover, g(dz —dt -9 = Dzz — sz - ¢ = 0. Hence (z, -2, -—§‘2§'1) mod
J2 € I. One easily checks that in fact locally I = (z, — z, — §,§,) + J2. It re-

mains to check that J2 C (z2 -2z, - §‘2§'1). In fact,J? = ((z, —zl)z,(z2 -2,)
(¢, — £,)), and we have

(22 _Zl)z =(Z2 _21 _§2§1)(22 _zl +§2§l)’
(22—21)(§'2—§1)=(22—21—5’23'1)({2—3'1)- .

We shall now define a superresidue map ress. We start with a formal situation.
Let 4 be a supercommutative ring of constants,

1.4. Lemma. Let & : A((z, §)) = O > dZ - A((z, §)) = w be the map 8f =
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=dZ - D, f. Define ress: w — A as a continuous A-linear map with

lfora=—1,b=1
ress(dZ - 2°¢P ) = :
0 otherwise

Then we have an exact sequence
I1ess

(1) 02A=05w 40

which does not change if one replaces Z by a different formal coordinate system
compatible with the same formal SUSY-structure.

Proof. By definition, 8(z°) = dZ - az*~1¢, 8(zP¢) =dZ- b . 1t followé that (1)
is exact. In order to prove that ress does not depend on the choice of Z it suffices
to establish a formula of the type

dZz ¢ - dZ'z27 ¢ =8L(Z, Z")

for two compatible SUSY-coordinates Z, Z'. Using the analytic identity D,
log z = z71¢ valid outside z = 0, one can guess and then easily prove a formal
identity:if z/z' = 1 mod (z, ¢) then

dZz7l¢ —dZ'z7 ¢ =8 logzz'7).

The general case reduces to this one by a linear coordinate change. In fact,
put

yz(zalzi)ﬁ Y azl =X + (),

iz0 jz0

2'=) bk 4 ) B2t =g()+BE)

k=1 250
Then compatibility means that D,z" = {'D, {' (cf. e.g. [3], i.e.
dg/dz = f? —ydv[3z; B=—[7.

In particular, b, = a:{: + nilpotent, and we have a new compatible system

z" = (' 2, b;”zf'). Replacing Z' by Z" does not change the superresidue,
andz"z7! =1 mod (z, ). .

1.5. A local computation. Now let 0 - S - X be an S-point of X, defined
by z =z, § = {,. Consider a section v of w meromorphic in a neighbourhood
of this point and having a pole of order < i + 1 at the associated divisor, i.e.
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Q) v=dZf(Z s) (@ -z, —§E, y~U+1) £ regular.

Denote by Tess )(v) the superresidue calculated, say, in the completion
71O Nz - 2, §§’0,§' ¢, ). Then we have

.
3) ress;, . (V) = 5 DI |72y,
In fact, if

f=) aG-zy =5+ Y b —zy—JE -5,

j=0 k>0

then ress , )(v) =(— l)btb On the other hand
D}*1 =D, (3/82) so that DX+ 1(f)] ,_, = (- 1Pillb,.

1.6. Residue with coefficients. The invariance property of the superresidue
shows that for any coherent sheaf £ on S and any S-point of X there exists a
map of sheaves

ress, 1we® T*E(ccD) > E

where D is the divisor associated to this S-point. Applying this to £ = w and
D = superdiagonal we get two residues along p, , - X);X -X:

ress! wIXIw(ooAS)—>0

The following Lemma is a superanalogue of 2.1.1.1, [2].

1.6.1. Lemma. There exists a unique map
réss tw X w(ooAS)»OX

1 2

with the following properties: a) § o 1€8s = ress! — ress®.

b) The restriction of 1éss to sections with bounded order of pole is a diffe-
rential operator along fibres of Py 5-

Proof. If there are two maps with such a property then their difference would
be a differential operator mapping w K w(iAS) into constants 17‘1(05). Hence
it must be zero. Therefore it suffices to construct ress locally. Putting
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U= le & dZZf(Zl’ ZZ’ S)(zl -z, — 51 ;2)—(i+ 1)

and calculating locally via (2) and (3) we get

1 .
ress'(v) = —dZ, — DF*' fZ), 2,9 -z, -5
1.

. 1
ress?(v) = (— 1)+ leI T D22'2+1f(21’22' S)|Z‘=22=z
it

Now put

1 2i [b—l:l

~ - 2 | n2i-b b

4 ress (v) " E -1 Dz’lbDZZf(Zl,ZZ,s)|21=22=Z
©5=0

In order to check that & réss(v) = ress? W) — ress2(v) denote

— D4 .
&p —Dll Dlézfl z2,=2,=Z

Then

D,g,y= 81t 18 40

This leads to the cancellation of all terms in & réss (v) except for the first and
the last. Finally, c¢) is checked directly. L

1.7. The Grothendieck - Sato description of the differential operator sheaf.
Let E be a vector bundle on X. Denote by D, /s the sheaf of differential operators
vertical (over §), acting on E on the left. There is a standard isomorphism

E®D0X,S ® E* '—”»DE/S,
Put E! = w ® E* and consider the sheaf E & Ef(cc AS) of meromorphic sec-
tions of £ X E¥(co AS), with a pole at AS . For a section v of this sheaf, denote

by r(v) the operator E - E defined by

r) L = ressi; w, p* Y
2

where ress’ means the superresidue along p, and (v, p;‘ €) refers to the con-

traction E R (w®F*@ E)~>EX w.

1.7.1. Lemma. a) Kerr = E R E*.
b) r defines an isomorphism
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r-ERENG+ DA)ERE! —»D;fs” 1

where < 2i + 1 refers to the D — order of a differential operator (which depends
only on the SUSY-structure, cf. (3.

Proof. a) is clear and b) follows from (3). In fact, D, £/S is generated by powers
of D and End E. Odd powers are covered by r in view of (3). Combining with
multlphcatlon by §, — §, one also reconstructs even powers. =

1.8. Adjoint operators. In the previous notation, let {.): E ® E - w be the
natural contraction map. Denote D« /S, right the sheaf of differential operators
over S acting upon £ on the right.

'1.8.1. Lemma. There exists a unique ring isomorphism

Dg,s = Dpt)s right £ P
and a unique map
.., :E‘xDE/S xE—>O0,
with the following properties: forany f' €EE* e €E P, Q GDE/S
(5) (', Pey = (f'P, &) + 8{f, P, e};
(6) PEEndE= f' P e}=0;
% {f1,D,. e = (= DI 1 (@zy (1!, e;
®) {f', QP &} ={f*Q, P, e} +{f", Q, Pe}

Proof. From (6) — (8), uniqueness of {f’, P, e} is clear. From (5) uniqueness
of P then follows. To prove the existence, one gets an explicit formula of the
type (5) in a compatible coordinate system Z, using the «integration by parts»
procedure and then checks all identities. u

1.9. A central extension of DE/S. Using Lemma 1.7.1., one can describe a
canonical central extension of DE /S considered as a Lie superalgebra (and de-
noted then DL“’S) by the sheaf H! = X/S/BO which is nontrivial on the fibre-
wise Zariski-open subsets of X. The existence of such an extension was suggested
by E. Witten [9] in his discussion of [1], and it was constructed by E. Getzler

[10] in the bosonic case using cyclic homology. Here it arises in a completely
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natural way, both in bosonic [2] and fermionic contexts. To construct it, we start
with an exact sequence (7.1b):

©) 0>ERE' >ERE (o) 5Dy ;g 0

Lemma 1.8.1. allows one to define the action of D1I§i7s upon E & E'(e0 A%):
(10) Lie P(f) = p} (P)v— (— 1¥7up3 (P),
forPEDE/S,véEKIE'(ooA’).

1.9.1. Proposition. a) £ ® E' is invariant with respect to this action. The
induced action upon Im(r) = DE/S is the adjoint one.
b) Leti,: X—X g*xX be the relative diagonal and j the composite map

j:ES xE'i‘;E@w@E*sgw.
Then lesijs (E ® E*)Y C j7Y(80). Therefore, factorizing (9) by i1 (80), we

get a central extension on X :

(11) 0~ H'! > DF¥s > DEec — 0.

Proof. a) We must establish that for e € E we have

r(p} (P)v) (&) —(— 1);"~r(vp§(‘1_’))(e) = Pr(v)(e) — (— l)F'Tr(v)P(e).

The first members of both clearly coincide. The second members coincide
due to the adjunction formula and the fact thatresso 6 = 0.
b) Similarly, fore €EE, f* € E' we have

(12) PO ft —(— 1P€+Ne R f1P) = (Pe)o 11 —(~ 1P €+ Ne g (f1P).

Furthermore, str(e ® f*) = (— 1)‘9~f~ {f*, e) (one may take this as definition).
Therefore, the r.h.s. of (12) after applying str becomes

(— l)f(ﬁ+3)(ft’ Pey — (— l)f(17+?)(ft'13, ) E5O. ]

2. ATIYAH’S ALGEBRAS

2.1. Notation. The basic technical notion introduced in [2] is that of the
Atiyah algebras (cf. also {8], ch. VIII). In order to motivate it, we recall that
historically the idea of symmetry became embodied in the following chain of
structures:

Lie group = Lie algebra of a Lie group = abstract Lie algebras. Similarly,
the package of definitions given in [2] consists of various specializations of the
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following scheme:
Automorphism group of a geometric object V =
= sheaf of infinitesimal symmetries of V (Atiyah’s algebra)
= abstract Atiyah’s algebras.

The geometric object V in question may consist of a collection of manifolds,
morphisms, and distributions. Therefore, its sheaf of infinitesimal symmetries
is endowed with the corresponding structures. Below, we list the principal si-
tuations we have to deal with, together with the standard notation and some
explanations. For an axiomatization of these «concrete» Atiyah algebras we
refer to [2], §1, and to §3.6 below.

We work in the category of superanalytic spaces. Therefore expressions like
«manifold» and «supermanifold», «vector bundle», «supervector bundle», and
«locally free sheafy, etc. are used synomymously. However, involvement of a
SUSY-structure is indicated in notation by a superscript s.

2.1.1. V = X, a manifold. Its sheaf of infinitesimal symmetries is denoted
TX , the tangent sheaf.

2.1.2. V = (X, E); E is a vector bundle on X. Its sheaf of infinitesimal sym-
metries 4 5 is a Lie (super) algebra on X represented as an extension

0>EndE~A, > Ty >0,

where End E is the internal endomorphism sheaf £, & E. It coincides with the
sheaf of (left) differential operators on E of order < 1, whose symbols is identity.

213.V = (X, S, m), where 7 : X — S is a submersion («relative manifold»).
Here the sheaf of infinitesimal symmetries is denoted by 7 . It can be described
as

T, =dmy M (a1 (Tg)), dr : Ty > m*(Ty).

LetT

X/s be the sheaf of vertical vector fields. Clearly, we have

0Ty, T, >7 ' (T5)~0.

In other words, a vector field belongs to 7 if all vectors tangent to points of
a w-fibre project onto the same vector tangent to the base space.
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214.V = (X, S, 7, E), where E is a vector bundle on X. The corresponding
Atiyah algebra is denoted 4 E.n It is embedded in the diagram

EndE = EndE = End E

{ 4 !

(1 Apis > Ap . —Ag
{ { 4

Ty)s =T, =Ty

which is self-explanatory.

2.1.5. V = (X, S, m, SUSY-structure), i.e. a SUSY-family. The sheaf of infini-
tesimal symmetries is denoted here by Tfr C T,. It consists of vector fields 9
on X such that [9, T} 51 C T}( ;s and fits into the exact sequence

0T

X/S»T;—»W‘I(TS)»O.

The following lemma is straightforward:

2.1.5.1. Lemma. Let Z be a compatible local coordinate. Then

(- 17 1

. N2
D,a-D, |aEOX ; [aa.,Dz]——zDzaDz.

- —aD?2
TS, 5= |3, =aD} +

In particular,

- 7T 1
TX/S = TX/S @ TX/S
as sheaves of linear spaces. L]

2.16. V = (X, S, m, E, SUSY-structure). The corresponding Atiyah algebra
will be denoted AE’ - 1t fits into a diagram similar to (1):

EndE =EndE =EndFE

{ ; 4 {

2) Ap;s ~Ag,, ~Ag
! s {

Tyis =715 > Ty

A local description similar to that in [2] shows that AI;! /S is a sheaf of combined
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Neveu-Schwarz-Kac-Moody superalgebras factorized by the centre.

2.2. The Q-extension of A’E,". We shall now describe an object /TZ.’,,, which
embodies the information not only on the infinitesimal symmetries of ¥ in
2.1.6 but also on its canonical central extension (which is symbolized by tilda)
and which is a complex (as superscript dot indicates). The nonzero components

on this complex live in dimension — 2, — 1, 0 and are as follows
a) “IE,Z%J =0y.
b)gg,”‘" =AsE,1r'
c) A:.l';r’ is defined by the following commutative diagram with exact rows
on X >§X :

0 >ERE! »ERE (o) — Dy s >0
U

I E X E'(2A%) 1
U
3) 0>ERE" > B, > 45,50
Ustroi¥ ' I
_ ~_ r
0 > WS Wy o > AEI,‘;I’S - A}';/s -0

The first line of this diagram corresponds bo the superversion of the Grothen-
dieck-Sato description of DE/S (cf. 1.7.1). The sheaf B is r1 (A‘E/s) by defini-
tion. The lower left vertical arrow is the restriction to the relative superdiagonal
followed by the matrix supertrace map. The lower line is supported by the
diagonal which is identified with X :/, ‘X - X x X.

Finally, the differentials of /TZ. , can be read off the following commutative
diagram whose middle column is the last line of (3):

Ox—‘—" w
J v
“) Al - Aply - A,
{ n

- A*

A E,n

s
E/S
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Our Z;”ﬂ corresponds to ?” 47 in the pure even setting of [2].

2.3. The brackets on /T" We shali now describe the structure of a differen-
tial graded lie superalgebra on A" We take the standard Z ,-grading upon
AE“ and AZ?;* and the reverse one uponA e,

The brackets are defined as follows.

[, ]0’0 is the standard (super) commutator of the vector fields preserving
X, S, m, SUSY).

[, ]0 _; is induced by the natural action of A’ o via infinitesimal symme-
tries. On A C A it coincides with that 1nduced by A%, C DL

E/S E.,n’ E/S E/S
EXE' (o AY) (cf. 1.9):

Lie(P)e ® f1)=Pe W 1! — (— 1P E+D em 1P

[, ]0 2 1s defined as the standard action of T’ (which is a factor of A0 s )
upon 0 2 g

Finally, [, ]_1 _; is given by the formula
e®ff e f"] = (= 1FT+T+I Nstr ressf (fle' W f'le).

Here e ® 17, ¢' X f'* mean representatives in £ & E?(2A°) of the elements of
A 1"’ we wish to commute (cf. (3)). The map réssf is defined like in Lemma
1.6.1., only here it takes values in End E. Finally, str is the usual matrix super-
trace.

2.3.1. Lemma, /TI;,‘" with these brackets is a differential graded Lie superal-
gebra. [

To verify this lemma, one must use a series of identities in order to check the
following facts:

— the symmetry of [ , ]_ 1-1 justifying our choice of Z, -gradation;

— the Jacobi 1dentlty Wthh amounts to the venﬁcatlon that A=, 472 are

A°-modules and i, 1A le A7 - A~ Zisa morphism of A%-modules;

— the compatibility of brackets with the differential dia, b] = [da, b] + (— 1)‘7
[a, db] which sould be checked for degrees [— 2, 0], [— 1, — 1] and [— 1, O],
only the second case being interesting.

See [2] for the bosonic case.

2.4, Nevey-Schwarz sheaf. Put NS, ¢ = "TEI,%: /Im&. The 1last line of (3)
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provides us with an exact sequence

0-H! > NS

E/S "Ai'/s ~>0

where H! = w/BOX on the «big» open sets which are Zariski-open along fibers
of . From Proposition 1.3.1., it follows that NS, /s is a central extension of
Az. /s A local computation as in [2] shows that NSE /s is a combined Neveu-
Schwarz-Kac-Moody type Lie superalgebra.

3. MAIN RESULTS

3.1. Theorem. In the notation of §2.2, we have a canonical exact sequence
of sheaves on S, whose middle term inherits from A}’ﬂ the structure of a Lie
superalgebra:

(1) 0- 05 >Rms Ay > T 0.

Comparing this with the exact sequence in 2.1.2. we see that (1) looks like
the Atiyah algebra of an invertible sheaf on S. In fact it is one:

3.2. Theorem. Let N\, denote the Berezinian sheaf Ber RuxE (cf. below and
[5]1). Then there is a canonical system of isomorphisms of superalgebras

. po0 e85 =
I :R%7 . —>A,\E

verifying a list of naturalness properties (cf. [2] and below) n

w/

Voronov {5} and P. Deligne independently proved the following SUSY version
of Mumford’s theorem: there is a canonical isomorphism A]. = A% . Aconstant
section #} of Al_“’i is called a Mumford superform. Forj = 3, it defines the quan-
tum measure on the moduli space (or, rather, stack) of SUSY-curves. Put 4 ;=
=A

Consider now the case E = /. Put A]. = A ;and v = (= 1Y 1@2i-1). AA.

A;®A T

3.3. Theorem. Using 3.2, one can construct a canonical connection V] on
A}. ® A;”’j At is flat, and its horizontal section is (proportional to) My

Thus, writing down the differential equations Vj(a) (y].) = 0 for a basis of
vector fields 9 in T, we get a system defining K; up to a constant. See [2] for
some concrete calculations in the bosonic case.
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3.4. Proof of Theorem 3.1. In (5), RO7y is the hyperdirect image of a complex
of sheaves. Working in the derived category, we calculate it in the following way.
Consider the following complexes (only non zero terms are written explicitly,
the grading is put in brackets):

T3 TS s~ Th s (2010, S wy s
(-1) 0) (-2) (-1)

Looking at the diagrams (2), (3), (4), one sees that /TE’W admits a 3-step fil-
tration 0 = 4%, C A*, C A° C A; = Ay° with the following properties:
A%, = wy s 2]
1 ie _ LY
b)Aa/A_1 =T7°.

-~ ~ id
©) A%, |42, is isomorphic to End 5 End £.
(-1 )

Since this last quotient is zero in the homotopic category, we have the distin-
guished triangle on X

wy s 2] “’/f%fw ~T°
which leads to the distinguished triangle on S
Rmsw$ ¢ [2] > Rux 132”" —>Rmx T
and then to the exact sequence of the cohomology sheaves
W RTImTet > ROmawy [2] > ROmeAy’ | > ROmaT ) > Rimswy (51215
Clearly, T *is quasiisomorphic to Y (T) so that
R 'msT?*=0; ROmiT2f=Ty.
Furthermore, w% ss [21fitsinto a triangle
wX/S[l] - w;,/s[2] -0y (2]
which shows that R 7 “‘);(/5 [2] = 0 and gives an exact sequence

R 1740, (2] ->R01r*wX/S [1] —>R01r*w;(/s [2]=0

| I

o :R'7x0, —>R11r*wX/S.
Clearly, ¢ is induced by §. Since in the Hausdorff topology we have an exact
sequence 0 —> 71 (Os) - OX Wy s 0, we get finally

Row*w;,/s [2] = Coker ¢ = R2mx(n"! (0g)) =0y .

finishing our proof.
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In this way, we get the trace map Tr: Rlﬂ*wx/s - OS which is involved in
Serre duality. Note that it may fail to be an isomorphism.

3.5. Proof of Theorem 3.2. Following [2] closely, we first construct I, directly
for «sufficiently acyclicy sheaves and then show that natural compatibility
properties allow us to extend this construction uniquely to all £,

First we construct a useful approximation to ffbf * which is denoted 77,
together with a morphism 8 : (3* »XE’" :

° ior
Cgt: 0 - By - Ap,
B4 ' ' | (see §2,(2)and 3))
qes . 1-2, i1, 70,
AE:'W : AE,WS = AE,‘:rs - AE,S"n

The structure of CZ’ is clarified with the help of a distinguished triangle

@) ERE'[1]>Cyf »n~1T,[0]

whose origin can be seen from the following commutative diagram:

EXE": ERE - 0
-quis J J
1 r N
Ker ¢: B, -~ AE/S
| T &
¢ B " odp,
\T!
('
T /Ty s
/7
| |
2 17,4[0): 0 - 7Ty

(we continue identifying sheaves on X with sheaves on Xg x X supported on
the diagonal).
Now we start constructing /.
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3.5.1. Case R7«E = 0. From Kiinneth and Serre duality, we get R(r x ).
(E X E'[1]) = 0. From (2), one then sees that

RO(m x )« Cl'?*’ 5 ROpy(n! TS) =T
Now g furnishes a map
RO(m x m«(BNCg*) = Tg = ROmu(A}" )

which defines a splitting of the exact sequence (1) as the reader can convince
himself by looking into the proof of Theorem 3.1. One should also check that
it commutes with brackets.

On the other hand, A, canomcally smce E is acyclic, so that A)\E is
canonically split. Hence the sphttmg of R® 1r*(A ) we have defined gives I

3.5.2. Case R!m«E = 0; a local section of 7 exists. From Kinneth and Serre
duality, we get in this case

Endn«E fori=0,
i (2 -
Ri(mx m)+x(ERE1]) = 0 for i 0

Applying this to (2), we -obtain an exact sequence
0 - Bnd m+£ - R (7 x m)x(CY* ) > Ty —>0.

Comparing this with the definition of A (cf 2.1.2), one begins to suspect
that an isomorphism J : RO%m x m)« (C” ) > A JE should exist. This is in
fact so, and J‘1 followed RO(m x m%) (B) has as its kernel (super) traceless endo-
morphisms and hence defines I} 1 4, A —>R07r*A'f"

To prove this, consider a Cousin resolved of C;’ constructed by means of a
relative divisor T on X/S which is a linear combination of components associated
to sections of 7. Put 72) = X x T C X x X and note that from Rin«E = 0,
it follows that sheaves A% | (eoT) E x E1(S T2, BS (o T(2)) are acyclic with
respect tom x ™ : X ¢ x X - S. Our resolvent is:

0 0
1 1
By (oo T')/BY 5 A% (o0 T/AL > AL g(o0 TVAG 5
t ta
By(oT®) —» A3 (wT)
1 1
B > Ak,
1 t

n n
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It shows that C;* is quasiisomorphic to

(ier,—q)
s

Cpt: o> B TP)> A3 (0T) @ B (oo T2))/BS, Ap (e DAL ..

Using the acyclicity, one sees that ROm«(C*%) is just the middle cohomology
sheaf of RO(m x mx) (C3%),ie.

RO (m x ﬂ)*(CZ}) ={(r.b)E W*Az.,ﬂ(oo T)®7T*BL~(°° T(Z))/BE)l
4(1) = p(b)}/Image of By (o T*?)).

We want to define with the help of (7, b) a differential operator, JE(T, b) :
E - E belonging tod .. Fore € m+E we put

Jg (7, b)(e) = 7(e) — ress, (b, p¥e)
where (b, p} €) in the result of the contraction:
(b, p3(e) E(E R w)(2 & + oo TV)E R w(2 &).

One can check that J is well defined on R°(7r x m)x CLf. In particular, poles
cancel because g(r) = p(b). Calculatmg./ upon right and left term of the triangle
(2) one sees that it is an isomorphism, hence JE :R°(1r X Tx) (C};‘) :>A“E.
Passing from 7, to T, + T, and then to 7, one can prove that it does not depend
on 7. Finally, we want to check that Ker R% (7 x 7)«(B) o Jz.l consists of (super)
traceless endomorphisms. This follows from the fact that str: End nx £ ~ O
is Tr o R(m x m)x(j), wherejis definedin 1.9.1.:

t str

j: ERE % E®F

We omit the proof that /. is a Lie algebra isomorphism: cf. [2], 2.3.4.

3.5.3. Compatibilities. As in [2] we now state a list of compatibilities of various
I, ’s defining them uniquely.

a) I should be compatible with base change.

b) Let 0 — E1 - FE - E2 - 0 be an exact sequence of locally free sheaves.
Then we have canonically 4, Ap = A ® A defined via 1 = >\ ® )\ and
similarly for ROW*(A”) The tensor product of Atiyah anebras is a speaal
operation defined in [2]},1.1.54. The 1dent1ﬁcatlonRO(1r*(J"") —-Ron*(A )
®(A~E*:,n) is constructed in the same way as in [2], 2.3.3. cf. below. The conlxiaa-
tibility condition is: [, = IE, ® IE,

c) For an exact sequence

0->E(—D)-»E-E/E(—D)>0
where D is a divisor associated to a section of @ put ED = ROn«(E/E(~ D)).
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We have A, = )\E(_D) ® det £, so thatA)\E = A}\E(_D) ® ABerED~ As in [2],
2.3.2. one can define an isomorphism
ROme(A3" ) =R0n*(“,;’(_0)m)®ABerED

and require the compatibility condition

Ig =15<—D)

® id
where id is identity on Ber £,

As in [2] one easily sees that 3.5.1. together with these compatibility condi-
tions define /.. uniquely.

Existence of IE follows from 3.5.2. after one settles some details as in [2],
2.3.5. Namely, the construction 3.5.2. agrees with 3.5.1. and is compatible
with localization. If R'm«E, = 0, i = 1, 2, it is also compatible with b), and if
Rlm«E(— D) = 0, it is compatible with c). For a general D, choose D locally
with RY'7+«E(D) = 0 and express Ip via I D)y Independence of /. is shown
as in a previous argument. L

3.6. Proof of Theorem 3.3. We must first recall some general definitions and
constructions from [3].

The Atiyah algebra 4, of a vector bundle on a manifold X introduced in
2.1.2. belongs to the general class of abstract Atiyah algebras A each of which
is a Lie superalgebra on X and a left O, -module, represented as an extension
(of both structures)

(3) 0>RYM 54 5T, >0

with the following properties. First, R is an associative O, -algebra with unit
(like End E) endowed with the (super) commutator b — (— 1)?? ba. Second,
TX is endowed with the usual bracket. Third, we must have [a, ab] = [« a]b +
+ (— DN*gfe, b) for any @ € A and eithera, b ER ora € OX, bEA la f1=
=e(@)(f) forfE OX CR.

A connection V on A is an Oy -linear section V: T, ~ A. Its curvature et
A2 Ty = A is given by ¢g(3; A 3,) = [V(Bl), V(@©,)] -V [3,, 9,]. A connec-
tion on A, is the same as one on E. If g = 0, V is called flat, or integrable.
Defining a flat connection on A4 is the same as giving a morphism (compatible
with all the structures)AOX A3 +f->Y@+f € Ty. fE0,.

Assume that in addition to (3) we are given in associative OX -algebra R’ and
a pair ¢ = (¢, , ¢g) of O, -linear Lie superalgebra maps: ¢, :A = Der R', Pr:
RUE  R'Lie with the following properties: [eg (), r'l = le, ), r'] for rER,
r"€R', ¢, @)f) =e@)f)fora €A, fEO, C R’. We can then define a new
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Atiyah algebra A’ with
0—>R’-+A’iTX -0

and a morphism 4 - A’ = ¢x(A4) inducing ¢g upon R. In order to do this, we
construct the semi-direct product R’ x A and impose relations (ng ", 0=(0,n
forallr €R.

In particular, Atiyah algebras of the invertible sheaves on X are represen-
table as in (3) with R = OX. On this class, we can put ¢ "'(V’A = ¢y = multi-
plication by a A€ C) and px(4) : = A A.

One can also use this gx-construction to define an extension of the construc-
tion (Ag , Ag ) > A, ¢ g, to the class of all Atiyah algebras.

Suppose we have (Ai, Ri, ei), i=1,2 asin (3). We can first from R =R1 sz
and an Atiyah algebra B = A1TX x A,, R CB.Thenwecanputd, @ 4, =
=¢x(B) forv = (g, ¥y 4,

pp :B—>DerR,® R, 1¢g(a,,a,)ry®r,)=[a,r]er, + (= 1)ER ®la,, 1,]

Or xr, ‘R xRV >R @ RN 1 (r), 1)) >r @1+ 187,

As in [2], one constructs a canonical isomorphism AE,® AE’ 5 AE,@E
(cf.[2], 1.1). If Eisinvertible anda € Z then A ;¢ = a4

We can now return to the setting of Theorem 3.3. We are going to construct
a canonical isomorphism 4 , A > 7A =4 A The above discussion shows
that we shall get in this way an 1somorphlsm Ao > A =4, ®A, "7 ie. an
integrable connection on A We can prove, that it a.nmhllates H; 6y an extension
of the argument in [2], 3. 1 .2 (at least, for g = 3) which is based upon the Deligne
compacification of the stack of SUSY curves and which we omit.

In tum, we shall derive the isomorphism 4, = 7AA on S from its version
on X and the fact that AA are certain direct images of complexes onX.

Concretely, 4 A; = RO7r (A s ) in view of Theorem 3.2. However, in the case
E = o/, we can devise a more economical subcomplex with the same direct
image.

Namely, T:r acts upon w’ via Lie derivative. This gives rise to a section

B g

wl,n

b

Define a maximal subcomplex A"' C/T" ,, for which A?” = Lie (Ts) Look-
ing at the diagrams (2) and (4), §2 one sees that A” is quasusomorphlc to
A;’] .- Hence we get I Roﬂ*(A") —>AA] The structure ofA"ls displayed
in the following version of @), §2:
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0
S ¢
OX - w
I i
—2,8 ~1,s 0,
;4 - A(
i Lie; ‘
Ay . C Lief'Ty) 5/ T8
i
0

All complexes A;’ belong to a generalization of the category of Atiyah al-
gebras on X which is defined in [2], 1.2 and is called there the category of A-
tiyah w-algebras. The operations ¢x, X, ®, and multiplication by a complex con-
tant can be extended to m-algebras, cf. [2], 1.2.1. Using this, one can check that
it suffices to construct isomorphisms A;"——? 'y].A'l’ .

The method used in [2], 3.1 is based upon direct coordinate computations
and essentially shows that the «central charges» for A]Tl and AII differ by
the factor 6j2 — 6j + 1. The same is true here, with 7 instead of this factor.

We restrict ourselves to listing some useful formulas needed to check it.

1y

a) Let aa = aD% +

D,a-D, €T%;,asin 2.1.5.1. Then

. j j 2
Lie;- ,) (dz)! = “2— D3a - dzy.
b) Lety, EE W E'(e0 A%) for E = w/  be an element such that

r(va) = Lie].(aa ). Then
[ aZ )&, —§)  (=1FD, a+j, —§)D} a7
vo=—

dZ{del 7/ mod EXE!

(2, = 2y = 5,5, @ = =55
-7
¢)[3,, 8,1 =3, ,\, where {a, b} = aD}b + D,aD,b—Dja-b
N N i ~
d) Lig;@,) = (— DYdZ/e | aDj + Dya- Dy +—Dia|e@z)y”. =
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